건축물의 지하구조 내진설계 프로그램 Con Resement를 소개합니다.

Con Basement는 Con Expert(Con Basement + Con Wall + Con Slab)에 포함되어 있습니다.

Con Concenent(ver.20.1)는 현행 건축구조기준 KDS 41 17 00(2019.3)의 '14. 지하구조물의 내진설계' 및 건축물 의 지하구조 내진설계 지침(<u>2020년2월3일 수정판 Rev.1</u>, 대한건축학회)에 따라서 정적 횡토압 및 지진 횡토압 을 산정하여 1방향 휨부재로서의 지하외벽(안전성, 사용성, 내구성)을 설계하고, 정적 횡토압, 지진 횡토압, 지 하층의 지진 관성력 영향(사용자가 입력한 각 층 유효중량 및 중량중심 위치) 및 지상층의 지진 관성력(사용자 가 입력한 1층 밑면 전단력, 전도모멘트) 영향을 고려하여 전단벽으로서의 지하 외벽 및 내벽(안전성)을 설계하 며 지진횡토압에 의해 발생되는 각 층의 횡변위와 휨부재의 국부변위를 계산합니다. 필요시 말뚝의 휨모멘트와 전단력도 산정합니다. 지상구조물의 지진 관성력 영향에 의한 지하층의 층 전단력은 사용자가 입력한 1층 밑면 전단력과 전도모멘트를 이용하여 1층 바닥과 기초바닥이 전도모멘트에 대해 짝힘으로 저항한다고 가정한 단순 해석법에 의해 산정합니다. 각 지하 외벽 및 내벽에 작용하는 면내 전단력(직접 전단력 + 비틀림 전단력)은 벽 의 면내 전단강성에 따른 하중분배와 벽그룹 강성중심과 횡하중 합력중심 간의 편심거리를 고려합니다. 또한 지반종류가 *S*₁, *S*₂ 혹은 *S*₄에 속하면 기초하부 지반을 분석하여 기초저면에서의 전단파 속도가 260m/s 이상 인 경우에는 지반-지하구조의 영향을 고려하여 지상구조물설계를 위한 유효지반증폭계수, 설계응답스펙트럼 및 내진설계범주를 결정합니다.

Con Cosement는 응답변위법기반(이중코사인)에 의한 지반변형과 수평지반반력계수에 의해 지진토압을 산정합 니다. 휨부재로서의 지하외벽 해석에는 유한요소해석법(수직으로 10mm 간격)을 적용하였고, 전단벽으로서의 지하 외벽과 내벽 해석에는 각층 높이와 분할요소 길이로 한 유한요소해석법을 적용하였습니다. 이 프로그램은 각 층의 다이아프램은 큰 개구부가 없는 강체로 간주하고 면내 강성과 강도가 모든 하중전달경로에 충분하다 고 가정하고 해석합니다.

이 프로그램의 주된 개발목적은 휨부재로서의 지하외벽과 전단벽으로서의 지하 외벽 및 내벽을 보수적으로 간 편하게 설계하기 위한 것으로 벽체의 축력에 관련된 해석과 설계는 수행하지 않습니다. 또한 터널과 같이 전단 벽이 없는 관형 구조물은 적용할 수 없습니다.

설계 대상 구조물이 앞에 기술한 Con Casement 프로그램의 가정조건과 해석방법에 적합하지 않는 경우나 더 경제적인 설계가 요구되는 경우에는 정밀 해석이 가능한 범용 프로그램 사용을 권장하며, Con Casement이나 Con Wall은 보조적으로 사용하시기 바랍니다. Con Wall은 Wall 이외에 Buttress 설계도 가능합니다.

Con Rasement를 포함한 Con Expert는 뉴테크구조기술사사무소에서 개발한 다른 프로그램(Com Expert, Steel Expert)과 마찬가지로 다음과 같은 기본원칙과 목표를 설정하고, 다양한 경험을 한 여러 구조설계 실무자 들과 오랜 기간 동안 협의하면서 직접 개발하고 검증하였습니다.

- 1. 구조기준(안전성, 사용성, 내구성)에 따른 정확한 설계
- 2. 구조기준(친환경성, 경제성)에 적합한 합리적인 설계
- 3. 실행과정의 정확성과 합리성을 직감적으로 확인하기 위한 설계과정 시각화
- 4. 실행결과를 항목별로 일목요연하게 검토할 수 있는 구조계산서 작성

뒤에 첨부한 자료를 통해 ConBasement의 개략적인 특징을 파악할 수 있습니다. 외부 구조전문가들의 요청으로 상용화한 ConBasement를 2020년 4월 13일에 출시하였습니다. 출시기념 특별프로모션이 예정대로 2020년 5월 12일 종료되었습니다.

> 2020년 5월 13일 NEWTECH 뉴테크구조기술사사무소 대표 김승원 드림 www.newtechstructure.com/software/

프로그램의 설계모델 입체 개념도

프로그램의 설계모델 단면 개념도

토목구조에서 다루는 지중터널구조물과 건축구조에서 다루는 지하구조물의 지진거동 차이

일반적으로 건축물의 지하구조는 내부 모멘트골조, 지하층을 둘러싼 지하외벽 및 바닥격막으로 구성되어 있다. 지하구조에서 모멘트골조는 지하외벽에 비해 횡력저항강성이 현저히 작기 때문에 대부분의 횡력은 지하외벽시스템으로 전달된다. 이러한 배경으로 건축구조기준 14.6(6)에서도 "지하구조에 대한 근사적인 설계방법으로, 설계지진토압을 포함하는 모든 횡하중을 횡하중에 평행한 외벽이 지지하도록 설계할 수 있다."라고 기술하고 있다. 따라서 지하구조의 지진력저항시스템은 지하층을 둘러싼 지하외벽으로 구성된 전단벽시스템으로 간주할 수 있으므로 ConBasement에서도 내부모멘트골조의 구조요소는 무시하고 해석한다. 또한 일반적으로 지하외벽의 길이/층고 비율은 5이상 이므로 지하외벽시스템은 전단거동을 하며 휨거동은 미미하다. 이러한 거동을 근거로 지하구조 지진력저항시스템의 해석과 지하외벽의 설계를 단순화할 수 있다.

A. 주요 입력데이터

1. 지진정보

건축물의 내진등급, 지진구역(및/또는 국가지진위험도의 유효지반가속도), 지진토압산정을 위한 수평지반반 력계수 산정방법 선택(건축학회 지침서, 도시철도 내진설계기준 등) 등

2. 지하구조정보

외벽 및 내벽의 평면위치, 각층 높이와 벽두께, 재료강도(콘크리트, 철근), 철근의 직경과 간격 제한조건, 지 하외벽의 피복두께, 노출환경, 시멘트종류, 지하구조 지진력저항시스템의 반응수정계수(*R*), 변위증폭계수(*C_d*) 및 각층 바닥슬래브두께, 지하외벽의 종류(일반, 연속벽), 말뚝관련정보 등

3. 지반정보

각 토층과 기반암의 두께, 단위중량, 마찰각, 전단파속도, 프와송비, 지하수위 및 상재하중

4. 지상 건축물의 지진관성력 정보

건축물의 전체 좌표계 X축 및 Y축을 기준한 각 지상 건축물의 밑면전단력 및 밑면전도모멘트와 각 작용력 의 위치(x, y), 각 방향 지진력저항시스템의 반응수정계수(R_x, R_y)

5. 지하 건축물의 지진관성력 정보

각 지하층의 유효중량과 유효중량 중심위치(전체 좌표계의 x, y)

- B. 주요 출력데이터
- 1. 내진설계 일반

지반종류분류(*S*₁, *S*₂, *S*₃, *S*₄, *S*₅, *S*₆), 설계스펙트럼가속도산정(*S*_{DS}, *S*_{D1}), 지반증폭계수산정(*F*_a, *F*_v), 내진설계 범주분류(*A*, *B*, *C*, *D*)

2. 토층 자유장의 지진관성력에 의한 지진토압

지표면에서의 스펙트럼 가속도 및 속도, 기반암 위 토층 자유장의 1차고유원진동수, 1차고유주기, 지진횡변 위, 지하구조물 밑면의 지진횡변위, 수평지반반력계수, 지진횡토압 등

3. 정적토압

지반정보입력자료에 따른 정적횡토압

4. 지하구조물의 지진관성력

사용자가 입력한 각층의 중량과 위치를 고려한 층지진하중과 층전단력 산정

- 5. 휨부재로서의 지하외벽에 대한 해석 및 설계
 - (1) 안전성 : 2가지 하중조합에 의한 소요휨강도, 소요전단강도, 휨철근배근(정착길이, 이음길이 포함), 전단 철근배근(전단철근배근 범위 포함), 설계휨강도, 설계전단강도 및 각 검토사항에 대한 평가 결과
 - (2) 사용성 및 내구성 : 사용성 검토용 휨모멘트, 균열모멘트, 휨균열폭, 처짐 및 각 검토사항에 대한 평가 결과
- 6. 전단벽으로서의 지하 외벽 및 내벽에 대한 해석 및 설계

소요전단강도, 소요전단철근 비와 단면적(수평 및 수직 철근), 설계전단강도, 지진토압에 의한 지하층 횡변 위, Slurry wall(지중연속벽)을 사용한 지하외벽의 수직접합부설계를 위한 소요전단강도

7. 말뚝에 대한 해석

단일 말뚝에 대한 소요 휨강도, 전단강도, 말뚝특성평가(짧은 또는 중간 또는 긴 말뚝으로 분류)

8. 지상부구조물의 내진설계범주 결정

지반분류, 기초 밑면 전단파속도 및 지하구조의 횡강성(변위)을 고려하여 지상구조물설계를 위한 유효지반 증폭계수, 설계응답스펙트럼 및 내진설계범주 결정

C. 출력 결과물

1. 그래픽 화면(25종류): 첨부 그림 참조

[하중 산정 및 해석]

- **화면 1**: 평면도(지하 외벽/내벽의 배치, 벽그룹의 강성중심위치, 각 지상부 구조물의 밑면 전단력/전도모멘트, 위치, 합력 위치 및 편심거리 등)
- 화면 2: 단면도(지하외벽, 바닥, 말뚝, 지하수위, 지층분포, 기반암깊이, 지반특성 등)
- 화면 3: 기반암 상부 토층의 자유장 고유원진동수 그래프, 지반분석, 지반종류분류, 내진설계범주분류 등
- 화면 4: 기반암 상부 토층의 자유장 고유주기 그래프, 지반분석, 지반종류분류, 내진설계범주분류 등
- **화면** 5 : 설계반응스펙트럼 가속도 그래프, 지상부 구조설계를 위한 기초 밑면기준 지반분류, 유효증폭계수, 내 진설계범주분류 등
- **화면 6**: 설계반응스펙트럼 속도 그래프, 지상부 구조설계를 위한 기초 밑면기준 지반분류, 유효증폭계수, 내진 설계범주분류 등
- 화면 7: 일반화한 외벽-지반 수평지반반력계수
- 화면 8 : 토층 자유장의 깊이에 따른 지진횡변위, 수평지반반력계수, 지진토압 산출과정
- 화면 9: 지하외벽 단면도, 주상도, 수평지진반력계수, 토층지진횡변위, 지진횡토압 분포도
- 화면 10: 지하외벽 단면도, 주상도, 정적횡압, 지반수직응력, 토층지진횡변위, 지진횡토압 분포도, 지진횡토압합 력 및 합력 위치 등
- 화면 11 : 지하외벽에 작용하는 각 하중조합별 횡압 분포도 및 각 층 슬래브 반력 등

[휨부재로서의 지하외벽설계]

화면 12:2가지 하중조합(1.6H, 1.0H + 1.0EI_e/R)에 대한 소요 휨강도와 소요 전단강도 분포도 등
화면 13: 각 분할 요소에 작용하는 최대소요휨강도와 최대소요전단강도 분포도, 변곡점 위치 등
화면 14: 휨인장철근의 배근상세도, 소요휨강도 및 설계휨강도 분포도 등
화면 15: 전단철근의 배근상세도, 소요전단강도 및 설계전단강도 분포도 등
화면 16: 지하외벽의 내구성검토를 위한 휨모멘트, 균열모멘트, 내부면과 외부면의 균열폭 분포도 등
화면 17: 지하외벽의 사용성검토를 위한 휨모멘트, 균열모멘트, 유효2차단면계수의 분포도 등
화면 18: 지하외벽의 사용성검토를 위한 휨모멘트, 균열모멘트, 수평처짐 분포도(초기/장기 처짐) 등

[전단벽으로서의 지하외벽설계]

화면 19: 앞쪽 및 뒤쪽 벽에 작용하는 횡압 분포도 및 슬래브 반력
화면 20: 공칭 횡압력, 공칭 층전단력 및 하중조합(1.0H + 1.0EI_e/R)에 대한 층 전단력 분포도
화면 21: 지하구조물의 지진관성력, 층전단력 및 지상구조물의 밑면 지진관성력에 의한 층전단력
화면 22: 각층 지하외벽 요소의 전단력(소요설계전단강도) 분포
화면 23: 각 하중효과에 대한 전단력 및 가장 불리한 하중조합에 대한 전단력(소요설계전단강도)
화면 24: 소요설계전단강도에 대한 소요전단철근 비와 단면적, 지진토압에 의한 층 횡변위 분포도 등
화면 25: 면외 하중 및 면내 하중을 모두 만족하는 수직 및 수평철근 배근도 및 검토 결과

[말뚝 작용력]

화면 26: 말뚝에 작용하는 휨모멘트와 전단력의 분포도

2. 구조계산서(4종류)
텍스트 파일 1: 요약계산서(*.BW1)
텍스트 파일 2: 요약상세계산서(*.BW2)
텍스트 파일 3: 상세계산서(*.BW3)
보고서 파일 4: 요약계산서(*.BW1)에 주요 그래픽화면 이미지를 추가한 요약계산서(*.BWO)

D. 데이터 입력파일 및 보고서 관리

데이터의 작성 및 입출력은 ConBasement에 내장된 전용 Editor를 이용하여 쉽고 빠르게 처리할 수 있다. 이 프로그램 사용에 익숙한 사용자는 소요 입력 자료들이 준비되었다면 모델작성에서 → 해석/설계 → 보 고서작성까지 평균적으로 개략 10분 정도 소요된다.

1. 데이터 입력 방식(2종류)

데이터 입력파일 작성은 입력창을 이용하거나 기존의 입력데이터파일을 이용하여 직접 수정할 수 있다.

2. 이미지 파일 저장

각 해석모델에 대한 프로그램 실행 후, 한 번의 클릭으로 해당 모델의 모든 그래픽화면을 이미지파일(bmp) 로 저장할 수 있다. 이 이미지파일들을 프레젠테이션 자료작성이나 보고서작성에 유용하게 사용할 수 있다.

3. 그림을 삽입한 구조설계보고서 작성

모든 해석모델에 대한 프로그램 실행 종료 후, 한 번의 클릭으로 요약계산서(*.BW1)에 주요 그래픽화면 이 미지들을 삽입한 구조설계보고서(*.BWO)를 작성할 수 있다.

ConExpert Developed by NEWTECH and ASSOCIATES

Con Resement Editor : 입출력 관리 프로그램

1. 프로젝트정보 입력 창

👭 Project Information	n – – –)	×
1, 사용권자 :	NEWTECH and ASSOCIATES	
2.업체명 :	NEWTECH and ASSOCIATES Structural Planing, Design and C	
3, 프로젝트 :	PROJECT-1	
4. 서브젝트 :	Basement Wall Design according to KBC2016	
5. 설계자 :	D,G,Kim	
6, 겸토자 :	S, W, Kim	
	OK	

다음 각 입력창에서 오른쪽 큰 창안에 포함된 내용들은 [ctrl]키를 누른 상태에서 마우스의 wheel을 위로 굴 리면 확대되고 아래로 굴리면 축소된다.

[Help] 탭을 누르면 입력 데이터에 대한 도움정보 매뉴얼(pdf 문서)이 열린다.

2. 일반정보 입력 창

E ConBasement_Editor: F:#ConExp	ert#ConExpert#ConProject#ConBasement#sample-1.BWD			-	×
File Project Help					
D 📴 🔲 🖪 🖪					
일반사항 Input -		모델별 DATA	.BWD .BW1 .BW2 .BW3 .BW0		
ANDE		Add Edit Del	NEWTECH and ASSOCIATES		^
2722		1 Two-Story	PROJECT-1		
설계코드	KS v		Basement Wall Design according to KBC2016 D.G.Kim, S.W.Kim		
하중조합계수			LOAD_COMBINATION-1, 1.6 LOAD_COMBINATION-2, 1.0 1.0		
			RESPONSE_MODIFICATION_COEFFICIENT_R, 3 2.5		
	성석하중(H) 시신하중(E)		RISK_CATEGORY, 1		
하중조합-1	1,6		KH_OPTION\$, AIK_0		
하중조합-2	1.0 1.0				
			5 Two-Story Basement Embedded into Soft Soil		
			with Two Towers (X Direction Force)		
지하구조 횡력저항 시스템			2		
바음스저게스 B	3		22.5 2.5 3000 900 45000 13500 5 4.5		
COTONTO			67.5 67.5 6000 1800 30000 9000 4 4.0		
변위증폭계수_Cd	2,5		WALL, 2300 30 400		
피자하스 비스			13 150 450 50		
A2018 27					
내진등급	1 ~		EX2. 60 10 60 15 CT1		
717170	1		Story_No, 2		
시신구락					
재현주기	2400 ~ 년		BN2, 4, 6 400		
	T018		Support_No, 3		
유표지한가락포	±018 V 0,10		GF-1, SLAB, 200 6 2000 57.1 32.9		
수평지반반력계수 산정법	AIK_0 ~		BF-2, SLAB, 400 6 1900 57.1 32.9		
			6075 90 90 0.169		
			Peremeter_Wall_segment_no, 15		
			76.0 0.0 W-2		
			81.36 1.07 W-3		
			88.93 8.64 W-5		
			90.00 14.00 W-6		
			90.00 76.00 W-7		
			85.96 85.97 W-9		
			81.36 88.93 W-10		
			76.00 90.00 W-11		~

3. 재료/강도정보 입력 창

E ConBasement_Editor: F:\ConExpert\ConExpert\ConProject\ConBasement\sample-1.BWD			– 🗆 ×
File Project Help			
일반사항 Input -	모델별 DATA	.BWD .BW1 .BW2 .BW3 .BW0	
1 Case명 Two-Story Basement Embedded into Soft Soli 간략정보 with Two Towers (X Direction Force)	Add Edit Del	NEWTECH and ASSOCIATES NEWTECH and ASSOCIATES Structural Planing, Design and Consulting Engineers PROJECT-1 Basement Wall Design according to KBC2016 D.6 Vie a. W Vie	^
제료강도 프크리트 단위절량 mc 2300 kg/m ^a 프크리트 tck 30 MPa 주월근 fy 400 MPa 전단철근 fy_s		KS LOAD_COMBINATION-1, 1.6 LOAD_COMBINATION-2, 1.0 1.0 RESPONSE_MODIFICATION_COEFFICIENT_R, 3 2.5 RISK_CATEGORY, 1 Z1, 2400 TABLE KH_OPTIONS, AIK_0 1 5 5 5 5 5 5 5 5 5 5 5 5 5	
철근빠근 (단위:mm) 피북두개 최소직경 최소간격 최대간격 중분간 배군타입 외기속 철근 80 10 150 160 10 \$\$ ~ 실내속 철근 40 10 150 10 \$\$ ~ \$ 수평철근 13 150 450 \$0 \$ \$ 전단보강근 100 10 10 \$ \$ \$		Mith 100 1000F5 (X UIFCELON FORCE) X VVV VK MV RX RX 22.5 22.5 2000 2000 45000 13500 5 4.5 UE 22.5 22.5 2000 2000 45000 9000 4 4.0 MO 100 100 150 10 5 10 5 40 10 150 150 10 5 13 150 450 50 400 100 10 0.659 0.75 CENTER, 1 EX2, 60 10 60 15 CT1 5tory.No, 2	
군열 몇 처짐 환경 노출화경 제하기가 초기대령 파극스도 파국오도 시에트조르		CTP BW1, 5.0 400 BW2, 4.0 400 Support M0, 3	
▲ 문 다 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이		[GF-1, SLAB; 200 6 2000 57.1 32.9 [BF-1, SLAB; 200 6 1500 57.1 32.9 [BF-2, SLAB; 400 6 1500 57.1 32.9 [G75 90 90 0.169	- 1
강도감소계수 소요강도 휠 0.65 위치 지점증심 ✓ 전단 0.75 목표강도비 1		Peremeter_Wall_segment_no, 15 10.0 0.0 W-1 76.0 0.0 W-2 81.36 1.0 85.90 4.10 W-4 88.93 8.64 90.00 14.00 90.00 14.00 90.00 15.00 91.35 81.35 85.93 8.1.35 85.93 81.35 91.00 14.00 91.00 14.00 91.00 14.00 91.00 14.00 91.00 14.00 91.00 14.00 91.00 14.00 91.00 14.00 91.00 14.00 91.00 14.00	

4. 평면정보 입력 창

E ConBasement_Editor: F:#ConExpert#ConExpert#ConProject#ConBasement#sample-1.BWD			-	Х
File Project Help				
일반사항 Input → 모	델별 DATA	.BWD .BW1 .BW2 .BW3 .BWO		
일반사항 Input • 21 2 Case 및 Two-Story Basement Embedded into Soft Soil 24 간략정보 with Two Towers (X Direction Force) Ad 사하구조 평면치수 바닥면적(m*) 토압분담독(m) 길DI(m) 6075 90 90 90 사하외액 평면정보 (15)	열별 DATA dd Edit Del Two-Story	.BWD .BW1 .BW2 .BW3 .BW0 with Two Towers (X Direction Force)		
5 88.93 8.64 ₩-5 ♥ 내부벽 평면정보 (0) ● ● ● 별 시작점 좌표(m) 끝점 좌표(m) 마크 요소 ×.i y.i ×.i • 1 ● ●		85.99 4.10 H-4 88.93 8.64 H-5 90.00 14.00 H-6 90.00 75.00 H-7 88.93 8.15 H-8 85.96 85.97 H-9 85.96 85.97 H-9 85.96 85.97 H-9 85.96 85.97 H-9 85.96 85.97 H-9 85.96 85.97 H-9 85.97 5.00 95.00 H-12 95.00 75.00 H-13 45.77 2.00 H-14 9.0		~

5. 단면정보 입력 창

6. 지반/말뚝정보 입력 창

E ConBasement_Editor: F:#ConExpert#ConExpert#ConProject#ConBasement#sample-1.BWD		- 🗆 X
File Project Help		
🗈 🛯 💕 🖬 🗠 🦪		
일반사항 Input →	모델별 DATA .BWD .BW1 .BW2 .BW3 .BW0	
4 Case명 Two-Story Basement Embedded into Soft Soil 간략정보 with Two Towers (X Direction Force)	Add Edit Del MALL, 2369 39 490 1 Two-Story 40 10 150 150 10 5 1 Two-Story 40 150 150 10 5 40 10 150 150 10 5 40 10 150 150 10 5 40 10 150 150 10 5 40 10 10 10 400 100 10 400 100 10 405 0.0 150 155 155 155 155 155 155 155 155 15	^
기분사항 표면재하 20.0 지하수위 GL - 2 기반암변형 무시 뒷백정적횧압 무시	EX, 00 40 00 15 C11 Story W0, 2 CTP BN1, 5.0 400 BN2, 4.0 400 Support_No, 3 GF-1, SLAB, 200 6 2000 57.1 32.9 BF-1, SLAB, 200 6 1500 57.1 32.9 BF-2, SLAB, 400 6 1500 57.1 32.9 BF-2, SLAB, 400 6 1500 57.1 32.9	
도송별 물성치 (4) No. 토송 문송 단송 단성치 도성 전날반 전발 용 주분 * 3.0 18 25 0.40 100 1 2 SOIL 3.0 19 28 0.35 200 1 3 SOIL 9.0 21 30 0.32 260 2 4 POCK 5.0 24 35 0.25 800 2	Peremeter_Wall_segment_no, 15 10.0 0.0 W-1 75.0 0.0 W-2 81.36 1.07 W-3 85.90 4.10 W-4 90.00 14.00 W-5 90.00 14.00 W-6 90.00 14.00 W-6 90.00 14.00 W-6 85.93 81.36 W-8 85.93 81.36 W-8 85.93 81.36 W-8 85.93 81.36 W-8 85.93 81.36 W-8 85.90 80.93 W-10 71.600 90.00 H-12 53.00 75.00 W-13 4.5 7.2 00 W-14	
파일기초	0.0 10.00 W-15 Dis_Cont_Interior_Wall_segment_no, 0	
파일기초 (YES) 파일리를 (HPC450x-55(8)) 파일장보 (R/1/12) (mm) (MPa) (mm*) (mm) (mm) 1000 (450 40000 100000 20 900 지반 토술종류 (R/N/m) SAND _ 2400	SURCHARGE, 20.0 Water_Table(#), 2 Soil_No, 4 Name d(i) Gamma(i) Angle(i) poss Vs(m/s) Layer Soil, 3.0 18 25 0.40 100 1 Soil, 3.0 18 25 0.40 100 1 Soil, 3.0 19 28 0.53 200 1 Soil, 3.0 19 28 0.53 200 2 Rock_DEPORMATION_SIGNED Rock_Mall_PRESSURES, IGNORE PILE, VS HPC459XK55(D), 20 I300 450 40000 160000000 900 SAND, 2400 FN0 FN0 FN0 FN0 Soil_Sand_Sand_Sand_Sand_Sand_Sand_Sand_Sand	~

7. 지진하중정보 입력 창

E ConBasement_Editor: F:#ConExpert#ConExpert#ConProject#ConBasement#sample-1.BWD			– 🗆 ×
File Project Help			
일반사항 Input -	모델별 DATA	.BWD ,BW1 ,BW2 ,BW3 ,BWO	
5 Case월 Two-Story Basement Embedded into Soft Soll 간략정보 with Two Towers (X Direction Force)	Add Edit Del	NEWTECH and ASSOCIATES NEWTECH and ASSOCIATES Structural Planing, Design and Consulting Engineers PROJECT-1 Basement Wall Design according to KBC2016 D.G.Kim, S.W.Kim	^
주 지진하종 방향 조 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		LOAD_COMBINATION-1, 1.6 LOAD_COMBINATION-2, 1.0 1.0 RESPONSE_MODIFICATION_COEFFICIENT_R, 3 2.5 RISK_CATEGORY, 1 Z1, 2400 TABLE KH_OPTIONS, AIK_0 1	
B B B B C L C L C L C D D B A		5 Two-Story Basement Embedded into Soft Soll with Two Towers (K Direction Force) Lateral_Load Directions, X 2 x y Vx Vy Mx My Rx Ry 22.5 22.5 3000 900 45000 13500 5 4.5 67.5 67.5 600 1800 3000 9000 4 4.0 MALL, 2300 30 400 80 10 150 150 10 5 13 150 450 50 400 100 10 0.85 0.75 CENTER, 1	
지하구조물 각 총의 총중량 (3) 총 초미르 총중량 중량 중량 중심 위치(m)		EX2, 60 10 60 15 CT1 Story_No, 2 CTP BM1, 5.0 400 BM2, 4.0 400	
15 GF-1 2000 57.1 32.9 81 BF-1 1500 57.1 32.9 82 BF-2 1900 57.1 32.9 83		Support_No.3 (5-1,51.8,2006 6 2000 57.1 32.9 BF-1, 51.8,2006 6 1500 57.1 32.9 BF-2,51.84,4006 6 1500 57.1 32.9 6075 90 90 0.169 Percenter_Wall_segment_no, 15 10.0 0.0 W-1 17.6 0 0.0 W-2 81.36 1.07 W-3 55 90 4.10 W-4	
지견토압에 의한 지하구조물의 횡변위 횡변위 c 0.169 mm		88.93 8.64 W-5 99.09 14.00 W-6 99.09 7.60 W-7 88.93 81.35 W-8 85.96 85.97 W-9 81.36 88.93 W-10	,

8. 보고서 작성 및 보기 창

입력 데이터 작성과 프로그램 수행이 완료된 후, 오른쪽 큰 창의 상부에 있는 각 탭을 누르면 해당 입력파 일 및 출력파일의 내용을 볼 수 있다.

[.BWO] 탭을 클릭하면 요약계산서(*.BW1)에 그림파일이 삽입된 보고서(*.BWO)가 자동으로 작성되어 창에 나타난다.

ConBasement_Editor: F:\ConExp	ert#ConExpert#ConProject#ConBasement#sample-1.BWD		- 🗆 X
File Project Help			
i 🗅 💕 🖬 🕰 🎒			
일반사항 Input •		모델별 DATA	.BWD .BW1 .BW2 .BW3 .BWO
설계코드		Add Edit Del	ConBasement(ver 20.1); This copy is licensed to NEWTECH and ASSOCIATES Sheet No. A NEWTECH and ASSOCIATES Structural Planing, Design and Consulting Engineers Date 2020-03-18
설계코드	KS v		Project : PROJECT-1 Made by D.G.Kim Subject : Basement Wall Design according to KBC2016 Chkd by S.W.Kim
하중조합계수			Title : Two-Story Basement Embedded into Soft Soil Input File sample-1.BWD Frame : with Two Towers (X Direction Force) Output File sample-1.BWO
하중조합-1	정적하중(H) 지진하중(E) 1.6		A. Design Code and Design Option
하중조합-2	1.0		* Design Code : KBC 2016, Strength Design Method * Structural Analysis Method : Finite Element Analysis for Continuous One Way Basement Walls
지하구조 횡력저항 시스템			· Setsmit Earth Pressure Analysis Method : Setsmit Derormation Method
반응수정계수_R	3		* Lateral Load Combination Cases : (1.6H) and (1.0H + 1.0E/R) R = 3.000
변위증폭계수_Cd	2.5		<pre>* Negative Moment Location by User Option ===> Center of Support(slab) * Flexural Strength Reduction Factors : Moment S.R.F. p = 0.85</pre>
지진하중 변수			* Snear Strength Reduction Factors : Snear S.R.F. p = 0.75 * Target Flexural Strength Ratio(Mu/pMn) : Target Ratio = 1.00
내진등급	1 ~		* Materials
지진구역	1 ~		Concrete : fck = 30 MPa Ec = 27,515 MPa Flexural Bar : Fy = 400 MPa Es = 200,000 MPa Shear Bar : Fy = 400 MPa Es = 200.000 MPa
재현주기	2400 ~ 년		* Concrete Clear Cover for Reinforcement
유효지반가속도 수평지반반력계수 산정법	Ⅲ 018		Exterior Side : Clear Cover = 80 mm Interior Side : Clear Cover = 40 mm
			* Deflection Analysis Method : The virtual work method to integrate curvature from Bischoff's equations
		-	* Long-term Loading Condition: 100% of the total static lateral load is sustained 60 months on wall
			* Exposure Condition : [EX2] Humidity, moist air, soil Cement Type = CT1 t = 1,825 days ts= 10 days RH = 60 % T = 15 Degree Celsisus
			B. Structural Information
			* Basement Depth = 9.000 m

Editor: F:\ConBasement_Editor: F:\ConExpe	ert#ConExpert#ConProject#ConBasement#sample-1.BW	D						- 0	×
File Project Help									
i 🗅 💕 🖬 🔍 🖨									
일반사항 Input -		모델별 DATA	,BWD ,BW1	,BW2	,BW3 .BWO				
4317 C		Add Edit Del	[Approximate Design	Story Drift	for In-Plane Shear M	Force due to Seismic Soil Pre	ssure]		^
설계코드	KS v	1 Two-Story	Floor Level I.D. Upper ~ Lower	Story Height hs (m)	Elastic Story Shear Drift dxe (mm)	Design Story Shear Drift dx = dxe*Cd/Ie (mm)	Interstory Drift delta (mm)	Interstory Drift Ratio (%)	y
하중조합계수	정적하중(H) 지지하중(E)		GF-1 ~ BF-1 BF-1 ~ BF-2	5.00 4.00	0.0813 0.0648	0.0813*2.50/1.20 = 0.169 0.0648*2.50/1.20 = 0.135	0.0344 0.1349	0.00069 0.00337	
하중조합-1 하중조합-2	1.6 1.0		H. Pile Bending Momen	t and Shear Fo	orce				
지하구조 횡력지항 시스템			* Pile Section Type * Pile Properties * Pile Cap * Pile Cap	: HPC450X65 : Dia. = 4 : Thickness	(B) 450 mm Ep = 40,0 = 900 mm Botto	000 MPa Ip = 1,600,000,0 om Level = -9.90 m	00 mm^4		
변흥구성제구_D 변위증폭계수_Cd	2,5		* Charateristic Len nh = 2,400 kN/m^	gth of The So 3 T = 1.9	il-Pile System : 284 m MAX Z = L/T	= 5.10/ 1.928 = 2.645	===> Intermed	Jiate Pile	
지진하중 변수 내진동급			* Axial Force from * Displacement at T * Bending Moment at * Shear Force at To	Input Data of op Level of P: Top Level of D Level of Pi:	User : Ps = 1,300 ile : U(bp) = 3 Pile : Ms = (Ps + 3 le : Vs = (3Ep*I;	<pre>3 kN (Compression under servi .13 mm (Lateral displacement EprIp/Lp^2)*U(bp) = -27.21 b/Lp^3)*U(bp) = -4.54</pre>	ce load) at bottom leve kN.m (under se kN (under se	el of pile cap ervice load) ervice load)	p)
지전구락 재현주기	1 2400 ビ ゼ		Congressment	ue-Way Basement W [[Two-Story Base	Wall Amalysis and Design	Soil JJ] with Two Towers (X Directio Input File:	n <mark>Force)</mark> sample-1.BWD		
유효시만가족도	±0.18		1: Basement Wall Layout a	nd Modified(Rs/Rb) Lateral Force of Super-	structure Seisnic Soil Defor			
실계코드 KS 하중조합-1 1.6 하중조합-2 10 가 가 조 함액 차상 시스템 10 반응수정계수.유 3 변위증폭계수.Cd 25 지건하공 변수 1 내건등급 1 지건구역 1 유효지반가속도 표0용 수평지반가락도 표0용 시시도.0 0.16			BASEMENT W	ALL LAYOUT with C	Centers of Basement Wall I	Rigidity and Lateral Load of Superstru	ucture		
			5.0 • •	1 1,000 h	v.1 m g(2:55 ∞, 22:55 ∞) 56 ta	100 y ₁₀	Axis X		>

ConExpert Developed by NEWTECH and ASSOCIATES

Con Expert의 출력화면 샘플

Con Rasement 출력화면 샘플

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초 Sample 2 : 지하8층, 지상부 1동, 일부 지하층 기반암에 묻힘 (일부 화면만 포함)

Con Mall 출력화면 샘플

Sample 1 : 지하3층, 비균일 지반, Dry Area 주변 Buttress 설계 (일부 화면만 포함)

Con Slab 출력화면 샘플

Sample 1:5스팬 연속슬래브, 다양한 지지부, 등분포 및 집중하중

Con Expert 메인 메뉴 창

Con Expert은 Con Rasement, Con Wall과 Con Slab로 구성되어 있다.

Con Basement 시작 창

ConBasement(ver 20.1) : Basement Design Expert	_		×			
ConBasement	NEI	JTECH				
WELCOME Use of Expert ConBasement !	299	9 673				
Program Name : ConBasement Version : Ver 20-1(2020.03.01) Usage : Design and Verification of Basement Developer : NEWTECH and ASSOCIATES Design Code : KBC2016, ACI 318_19 STRENGTH METHOD and Seismic Building Code(KDS 41 17 00) Units : International System (SI)						
[Applicable Range and Major Features]						
 Continuity Type : Single or Continuous One Way Basement Wall Support Type : Pin, Slab(considering Flexural Stiffness for Moment Distribution) Loading Type : Soil, Water, Surcharge and Seismic Lateral Pressures, and Seismic Inertia Forces Required Strength : Shear Force, Bending Moment and Story Shear Force by Detail Analysis Procedure Design Strength : Shear and Flexural Strength for Out-of-Plane and In-Plane Bar Details : Flexural and Shear Reinforcement with Bar Dia, Spacing and Cutoff Locations Serviceability : Verification of Deflection(ACI 318_19) and Crack(fib Model Code 2010) Graphic 1 and 2 : Basement Wall Layout and, Structural and Soil Information from User input Data Graphic 3 ~ 6 : Soil Fundmental Frequency and Period, and Design Spectral Acceleration and Velocity Graphic 7 ~ 8 : Normalized Lateral Wall-Soil Stiffness, Seismic Soil Displacement and Pressure Out Data Graphic 10 ~ 11 : Nominal Static and Seismic Pressure, and Factored Pressure and Slab Reactions Graphic 14 : Flexural Main Bar Placing Detail and Design Shear Strength Diagrams with Req'd Design Graphic 15 : Shear Link Bar Placing Detail and Design Shear Strength Diagrams with Req'd Design Strength is Deflection Diagram with Service Moment and Cracking Moment Graphic 17 and 18 : Deflection Diagram with Service Moment and Cracking Moment Graphic 17 and 18 : Deflection Diagram with Service Moment and Story Shear Force Diagrams Graphic 17 and 18 : Deflection Diagram with Service Moment and Story Shear Strength Diagrams Graphic 23 ~ 24 : Required Minimum Shear Bar of Basement Wall as Shear Wall and Final Basement Wall Reinfor Graphic 23 ~ 24 : Required Minimum Shear Bar of Basement Wall as Shear Wall and Final Basement Wall Reinfor 						
To continue, Click on Me ! To return to the main menu, Click on M	le t					
ENTER INPUT FILE NAME [.BWD] ? sample-1						

입력데이터 파일명 입력 창

[To continue, Click on Me !] 상자를 클릭하면 ConBasement Editor가 열리면서 위 그림과 같이 입력데이 터 파일명 입력 요구문이 나온다.

데이터 파일명을 입력한 후, [Enter] key를 누르면 다음과 같은 순서로 프로그램의 수행이 시작된다.

Con Resement 출력 화면 1 : 평면도

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

전체 좌표계, 지하외벽요소의 절점위치, 절점번호, 요소중심위치, 요소이름 노란색은 지상부 각 타워의 1층 기준 밑면전단력(X방향 및 Y방향), 밑면전단력 작용 위치(x, y) 녹색은 지상부 타워들의 밑면전단력 합력(X방향 및 Y방향), 합력 작용 위치(x, y) 벽그룹의 강성중심 위치(x, y), 강성중심과 합력중심 간 편심거리(e_x, e_y), 편심에 의한 비틀림 회전방향

- 프로그램 실행 시에 사용자의 벽요소(외벽 및 내벽) 입력위치를 확인할 수 있도록 커서가 자동으로 각 절점위치
 로 이동하며, 왼쪽 상부에 각 해당 위치가 순차적으로 나타남.
- 프로그램 실행 시에 사용자의 지상구조물의 밑면하중에 대한 입력 데이터를 확인할 수 있도록 커서가 자동으로 각 밑면하중위치와 합력하중 위치로 이동하며 각 해당 정보가 왼쪽 글상자와 초록색 글씨 위치에 순차적으로 나타남.
- 커서의 자동순환 종료 후, 사용자가 실행화면에서 커서를 목표 위치로 이동하면 목표 위치에 대한 평면적 입력 위치를 확인할 수 있음

Con Rasement 출력 화면 2 : 지반 특성

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

왼쪽부터 지하외벽/말뚝 단면, 토층단면, 각 토층의 단위중량, 저항마찰각/프와송비, 전단파속도

Con Resement 출력 화면 3 : 기반암 위 토층 자유장의 고유 원진동수

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

상부부터 지진구역/내진등급, 유효지반가속도, 지반의 동적특성, 지표면 기준 지반분류, 지반고유원진동수

Con Resement 출력 화면 4: 기반암 위 토층 자유장의 고유주기

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

상부부터 지진구역/내진등급, 유효지반가속도, 지반의 동적특성, 지표면 기준 지반분류, 지반고유주기

Con Resement 출력 화면 5 : 설계응답스펙트럼 가속도

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

상부부터 지진구역/내진등급, 유효지반가속도, 지반의 동적특성, 지표면 기준 지반분류, 설계스펙트럼가속도 (단주기, 1초주기), 지반증폭계수(단주기, 1초주기), 내진설계범주, 설계응답스펙트럼가속도

녹색 글씨는 지하구조물 내진설계에 적용하는 지표층(기반암 상부의 토층) 지반의 고유주기에 해당되는 기 반암의 지반증폭계수(단주기, 1초주기), 설계응답스펙트럼가속도, T₀, T_s

붉은 글씨는 지하구조물의 영향을 고려한 지상구조물의 지반증폭계수(단주기, 1초주기), 설계응답스펙트럼가 속도 T₀, T_s, 지반종류, 내진설계범주

그래프에서 연두색 선은 지하구조의 영향을 고려하지 않은 지상구조 설계용 설계응답스펙트럼 가속도. 그래프에서 녹색 선과 글씨는 지하구조 설계용, 붉은색 선과 글씨는 지하구조의 영향을 고려한 지상구조 설 계용. 연두색과 붉은색 선이 겹칠 경우에는 붉은 선만 나타남. 녹색과 붉은색 선이 겹칠 경우에는 녹색 선 만 나타남.

Con Resement 출력 화면 6: 설계응답스펙트럼 속도

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

상부부터 지진구역/내진등급, 유효지반가속도, 지반의 동적특성, 지표면 기준 지반분류, 설계스펙트럼가속도 (단주기, 1초주기), 지반증폭계수(단주기, 1초주기), 내진설계범주, 설계응답스펙트럼속도

녹색 글씨는 지하구조물 내진설계에 적용하는 지표층(기반암 상부의 토층) 지반의 고유주기에 해당되는 기 반암의 지반증폭계수(단주기, 1초주기), 설계응답스펙트럼속도, T₀, T_s

붉은 글씨는 지하구조물의 영향을 고려한 지상구조물의 지반증폭계수(단주기, 1초주기), 설계응답스펙트럼속 도, T₀, T_s, 지반종류, 내진설계범주

그래프에서 연두색 선은 지하구조의 영향을 고려하지 않은 지상구조 설계용 설계응답스펙트럼 속도. 그래프에서 녹색 선과 글씨는 지하구조 설계용, 붉은색 선과 글씨는 지하구조의 영향을 고려한 지상구조 설 계용. 연두색과 붉은색 선이 겹칠 경우에는 붉은 선만 나타남. 녹색과 붉은색 선이 겹칠 경우에는 녹색 선 만 나타남.

Con Resement 출력 화면 7 : 일반화한 외벽-지반 수평지반반력계수

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

왼쪽 그래프 : 전단파 속도에 따른 일반화한 외벽-지반 수평지반반력계수 오른쪽 그래프 : 깊이 증가에 따른 일반화한 외벽-지반 수평지반반력계수 흰색선은 대한건축학회 건축물의 지하구조 내진설계지침 해설표 6-1을 일반화한 계수 빨간색선 및 초록색선은 해설표 6-1을 일반화한 추세선-1 및 추세선-2

Con Casement 출력 화면 8 : 지하외벽에 작용하는 지진토압 계산 과정

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

ConBasement(ver 2	20.1) :	Basement	Design	Expert
and compassentient(ref.		Descritterite	e congri	

Con Resement Wall Analysis and Design												
developed	i by NEWTER		[Two-Sto	ory Basem	ent Embedded	into Soft	Soil]	with	Two	Towers (X Dired Input Fi	ction For le: sampl	ce) e-1.BWD
8: Soi	l-Free	Field Displa	acement and	d Seismic	: Pressure							
										Please wait a	few seco	nds !
[Cal	[Calculation Process] Seismic Soil Displacement and Pressure											
Z=	858	Depth(z)=	8.58 m	U(z)=	2.9578 mm	U(z.b)=	2.7861	mm	KH=	39.768 kN∕m^3	p(z)=	6.83 kN/m^2
	859	Depth(z)=	8.59 m	U(z)=	2.9538 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN/m^3	p(z)=	6.67 kN/m^2
Z=	860	Depth(z)=	8.60 m	U(z)=	2.9498 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN/m^3	p(z)=	6.51 kN/m^2
Z=	861	Depth(z)=	8.61 m	U(z)=	2.9457 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN∕m^3	p(z)=	6.35 kN∕m^2
Z=	862	Depth(z)=	8.62 m	U(z)=	2.9417 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN∕m^3	p(z)=	6.19 kN∕m^2
Z=	863	Depth(z)=	8.63 m	U(z)=	2.9376 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN∕m^3	p(z)=	6.02 kN∕m^2
Z=	864	Depth(z)=	8.64 m	U(z)=	2.9336 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN∕m^3	p(z)=	5.86 kN∕m^2
Z=	865	Depth(z)=	8.65 m	U(z)=	2.9295 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN∕m^3	p(z)=	5.70 kN/m^2
Z=	866	Depth(z)=	8.66 m	U(z)=	2.9255 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN∕m^3	p(z)=	5.54 kN/m^2
Z=	867	Depth(z)=	8.67 m	U(z)=	2.9214 mm	U(z,b)=	2.7861	mm .	KH=	39,768 kN∕m^3	p(z)=	5.38 kN/m^2
Z=	868	Depth(z)=	8.68 m	U(z)=	2.9174 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN∕m^3	p(z)=	5.22 kN/m^2
Z=	869	Depth(z)=	8.69 m	U(z)=	2.9133 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN∕m^3	p(z)=	5.06 kN/m^2
<u>Z</u> =	870	Depth(z)=	8.70 m	U(z)=	2.9092 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN∕m^3	p(z)=	4.90 kN/m^2
Z=	871	Depth(z)=	8.71 m	U(z)=	2.9052 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN/m~3	p(z)=	4.73 kN/m ⁻²
2=	872	Depth(z)=	8.72 m	U(z)=	2.9011 mm	U(z,b)=	2.7861	mm .	KH=	39,768 kN/m 3	p(z) =	4.57 kN/m 2
Z=	873	Depth(z)=	8.73 m	U(z)=	2.8970 mm	U(z,b)=	2.7861	mm .	KH=	39,768 kM/m 3	p(z)=	4.41 kM/m Z
Z=	874	Depth(z)=	8.74 m	U(Z)=	2.8930 mm	U(z,b) =	2.7861	MM	KH=	39,768 kM/m 3	p(z) =	4.25 kM/m 2
Z= 72-	875	Deptn(z)=	8.75 M	U(Z)=	2.8889 MM	U(Z, D) =	2.7001	mm .	КН= VII_	39,768 KM/M 3	p(z) =	4.09 KN/M Z
2= 7-	876 077	Deptn(Z)=	8.76 M 9 77	U(Z)=	2.8848 MM	U(z,b) =	2 7061	mm .	КП= VU_	33,768 KN/M 3	p(z) =	3.32 KM/M 2
2- 7-	077	Depth(Z)-	0.// M 0 70	U(z) =	2.00V/ MM 2.0766 mm	U(z,b) =	2 7061	mm .	⊼П− ν⊔_	37,700 KH/M 3	p(z) =	3.70 KH/M 4
2- 7-	070 979	Depth(Z)-	0.70 M	U(Z)-	2.0700 MM	U(2,D)-	2 7961		лн- VЦ-	39 768 LN/m^3	p(z) =	3.00 KH7H Z
2- 7=	880	Depth(Z)=	8.80 m	U(Z)- H(z)=	2.0720 MM 2.8685 mm	U(2,D)-	2 7861	mm	KH=	39 768 kN/m^3	p(z) =	3 27 kN/m^2
2- 7=	881	Depth(z)=	8.81 m	U(Z)- H(z)=	2.0003 mm 2.8644 mm	U(2,D)-	2 7861	mm	KH=	39 768 kN/m^3	p(z) =	3 11 kN/m^2
2=	882	Depth(Z)=	8.82 m	U(z) =	2 8603 mm	U(z,b)=	2 7861	mm	KH=	39 768 kN/m^3	p(z) =	2 95 kN/m^2
2=	883	Depth(z)=	8.83 m	ll(z) =	2 8562 mm	H(z,h) =	2 7861	mm	KH=	39.768 kN/m^3	p(z) =	2.79 kN/m^2
Z=	884	Denth(z) =	8.84 m	(z) =	2.8521 mm	H(z,h) =	2.7861	mm	KH=	39.768 kN/m^3	n(z) =	2.62 kN/m^2
	885	Denth(z) =	8.85 m	(z) =	2.8480 mm	II(z,h)=	2.7861	mm	KH=	39.768 kN/m^3	n(z) =	2.46 kN/m^2
	886	Depth(z) =	8.86 m	U(z)=	2.8439 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN/m^3	p(z)=	2.30 kN/m^2
Z=	887	Depth(z)=	8.87 m	U(z)=	2.8398 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN/m^3	p(z)=	2.13 kN/m^2
Z=	888	Depth(z)=	8.88 m	U(z)=	2.8357 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN/m^3	p(z)=	1.97 kN/m^2
Z=	889	Depth(z)=	8.89 m	U(z)=	2.8315 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN∕m^3	p(z)=	1.81 kN/m^2
Z=	890	Depth(z)=	8.90 m	U(z)=	2.8274 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN∕m^3	p(z)=	1.64 kN/m^2
Z=	891	Depth(z)=	8.91 m	U(z)=	2.8233 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN∕m^3	p(z)=	1.48 kN/m^2
Z=	892	Depth(z)=	8.92 m	U(z)=	2.8192 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN∕m^3	p(z)=	1.31 kN/m^2
Z=	893	Depth(z)=	8.93 m	U(z)=	2.8151 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN∕m^3	p(z)=	1.15 kN/m^2
Z=	894	Depth(z)=	8.94 m	U(z)=	2.8109 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN∕m^3	p(z)=	0.99 kN/m^2
Z=	895	Depth(z)=	8.95 m	U(z)=	2.8068 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN∕m^3	p(z)=	0.82 kN/m^2
Z=	896	Depth(z)=	8.96 m	U(z)=	2.8027 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN∕m^3	p(z)=	0.66 kN/m^2
Z=	897	Depth(z)=	8.97 m	U(z)=	2.7986 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN∕m^3	p(z)=	0.49 kN/m^2
Z=	898	Depth(z)=	8.98 m	U(z)=	2.7944 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN∕m^3	p(z)=	0.33 kN/m^2
Z=	899	Depth(z)=	8.99 m	U(z)=	2.7903 mm	U(z,b)=	2.7861	mm	KH=	39,768 kN∕m^3	p(z)=	0.16 kN/m^2
Z =	900	Depth(z)=	9.00 m	U(z)=	2.7861 mm	U(z,b)=	2.7861		KH=	39,768 kM∕m^3	p(z)=	0.00 kN/m~2

_

 \times

왼쪽부터 요소번호, 깊이, 지반 수평변위, 구조밑면 수평변위, 수평지반반력계수, 지진토압 이 예에서 수평지반반력계수 산정방법은 아래 표의 A0를 적용하였음

그브	각 토층의 Vs 적용	단일 평균 값 Vs 적용	이중 평균 값 Vs 적용	
1 2	0	1	2	
A AIK SDG Table C6-1 기반	A0	A1	A2	
B C6-1기반 추세선 1	BO	B1	B2	
C C6-1기반 추세선 2	С0	C1	C2	
D 도시철도 내진설계 기준	D0	D1	D2	
E 도시철도 내진설계 기준(kim,m.c.안)	EO	E1	E2	

권장 Option : A0, B0, C0

Con Rasement 출력 화면 9: 지반의 지진수평변위와 지하외벽에 작용하는 지진토압 Sample 1: 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

왼쪽부터 지하외벽/말뚝 단면, 토층단면, 수평지반반력계수, 지반/구조 수평변위, 지진토압 (이 예의 수평지반반력계수는 ConBasement의 여러 가지 옵션 중에 내진설계 지침의 아래 표를 적용한 경우임)

Vs (m/s)	질량밀도 (ton/m³)	프아송 비	전단탄성계 수(kPa)	탄성계수 (kPa)	수평지반반력계수, K_H (kN/m ³)		
					지표면 ~ <i>H</i> /3	H/3 ~ 2H/3	2 <i>H</i> /3 ~ 기반면
100	1.8	0.4	18000	50400	4082	5695	8770
200	1.8	0.4	72000	201600	16360	22725	34997
300	1.8	0.4	1 62000	453600	36809	51130	78743
400	1.9	0.4	304000	851200	69074	95948	147764
500	1.9	0.4	475000	1330000	107929	149919	230881
600	1.9	0.4	684000	1915200	155417	215883	332469
700	2.0	0.4	980000	2744000	222673	309307	476345

건축물의 지하구조 내진설계 지침해설 표 6-1 (대한건축학회)

Con Rasement 출력 화면 10 : 지하외벽에 작용하는 정적 및 지진 횡토압

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

왼쪽부터 지하외벽/말뚝 단면, 토층단면, 정적횡토압, 지반수직응력, 지반/구조 수평변위, 지진토압

Con Resement 출력 화면 11 : 지하외벽에 작용하는 횡하중

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

왼쪽부터 지하외벽 단면, 토층단면, 지하외벽에 작용하는 횡하중, 슬래브 반력, 각 하중조합의 횡하중

Con Resement 출력 화면 12 : 각 하중조합에 대한 소요강도

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

왼쪽부터 지하외벽 단면, 소요휨강도(1.6H, 1.0H + 1.0EI_e/R), 소요전단강도(1.6H, 1.0H + 1.0EI_e/R)

Con Resement 출력 화면 13 : 최대소요강도

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

왼쪽부터 지하외벽 단면, 최대소요휨강도(Moment Envelopes), 최대소요전단강도(Shear Envelopes)

Con Resement 출력 화면 13a : 최대소요강도

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

왼쪽부터 지하외벽 단면, 최대소요휨강도(Moment Envelopes), 최대소요전단강도(Shear Envelopes)

Con Resement 출력 화면 14 : 휨철근 상세 및 소요휨강도/설계휨강도

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

왼쪽부터 지하외벽 단면, 휨철근배근상세(철근 직경, 간격, 이음, 정착 등), 소요휨강도/설계휨강도 (Envelopes)

Con Resement 출력 화면 15 : 전단철근 상세 및 소요전단강도/설계전단강도

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

왼쪽부터 지하외벽 단면, 전단철근배근상세(철근 직경, 간격, 배근 범위 등), 소요전단강도/설계전단강도 (Envelopes)

Con Resement 출력 화면 16 : 균열폭 분포

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

왼쪽부터 지하외벽 단면, 휨철근배근상세, 사용하중모멘트/균열모멘트, 균열폭(균열 상태별 구분)

Con Rasement 출력 화면 17 : 유효2차단면모멘트 분포

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

왼쪽부터 지하외벽 단면, 휨철근배근상세, 사용하중모멘트/균열모멘트, 2차단면모멘트(I_G, I_{cr}, I_{eff})

Con Resement 출력 화면 18 : 처짐 분포

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

왼쪽부터 지하외벽 단면, 휨철근배근상세, 사용하중모멘트/균열모멘트, 처짐(초기처짐, 장기처짐)

Con Resement 출력 화면 19: 앞쪽 및 뒤쪽 벽에 작용하는 횡압(단위 폭) 분포, 전단벽설계용

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

ConB	Basement(ver 20.1) : Baser	ment Design Expert			— [) X	
Co	n Rosement	One-Way Basement Wall Analys	sis and Design				
develo	ped by NEWTECH	[Two-Story Basement Embed	lded into Soft Soil] with Two Towers	s (X Direction Force) Input File: sample-1.BWD		
19: La	ateral Pressures o	on Back Wall and Front Wall					
	SOIL PROFILE	STATIC LATERA ON BACK WALL, KI	STATIC LATERAL PRESSURE ON BACK WALL, kN/m^2/1m width		STATIC AND SEISMIC LATERAL PRESSURE ON FRONT WALL, kN/m ² /1m width		
	Weight Angle Ko Vs 20.0 kN/sq.m	1.0	•	1.00			
				GF-1 200 нни	Ie = 1.20 R = 3.00		
	al -2.00 m		5.00 m	69,2 kH 400 mm			
	19, 28, 0.53, 200		X	8F-1 200 mm 446 km			
	21, 30, 0.5, 260		4.00 m	400 mm 8F-2 400 mm 209 kt	Lateral Pressure by Surcharse		
	Out of Screen Rage GL -15.0 m 24.0 35.0 0.43 800				Lateral Soil Pressure Lateral Water Pressure Seismic Lateral Pressure		

왼쪽부터 토층단면, 앞쪽 및 뒤쪽 지하외벽에 작용하는 지반 횡압 분포

뒤쪽 지하외벽에 작용하는 지반의 정적 횡압 적용 여부는 사용자의 선택에 따름 이 예는 뒤쪽 지하외벽에 작용하는 지반의 정적 횡압을 적용하지 않은 경우임.

Con Resement 출력 화면 20: 횡압력에 의한 층 전단력(단위 폭) 분포, 전단벽설계용

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

왼쪽부터 지하외벽 단면, 토층단면, 지하외벽에 작용하는 1.0H 전단력, 1.0E 전단력, $1.0H + 1.0EI_e/R$ 전 단력

이 예는 뒤쪽 지하외벽에 작용하는 지반의 정적 횡압을 적용하지 않은 경우임.

Con Cosement 출력 화면 21 : 지하 및 지상 구조의 지진하중에 의한 층전단력, 전단벽설계용

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

왼쪽부터 지하외벽 단면, 지하층 유효중량/수평가속도, 지하층관성력, 지하층관성력에 의한 층전단력, 지상 부 밑면 전단력 및 전도모멘트에 의한 층전단력

그림출처 : TBI, PEER
Con Rasement 출력 화면 22 : 각층 지하외벽 요소의 전단력 분포(단위 길이), 전단벽설계용

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

X방향 하중 적용 시, 각 층의 분할 벽요소에 작용하는 전단력(Vu)의 분포(kN/m)

이 예는 뒤쪽 지하외벽에 작용하는 지반의 정적 횡압을 적용하지 않은 경우임.

Con Resement 출력 화면 23 : 각 하중 효과에 의한 층전단력(단위 길이), 전단벽설계용

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

위 그림은 앞 그림 22의 전단력 분포 그래프에서 최대값을 갖는 전단벽요소에 대한 하중종류별 전단력 왼쪽부터 지하외벽 단면, 각 하중에 의한 층전단력(정적토압, 지진토압, 지하관성력, 지상관성력 영향), 소요 전단강도

이 예는 뒤쪽 지하외벽에 작용하는 지반의 정적 횡압을 적용하지 않은 경우임.

Con Resement 출력 화면 24 : 전단벽으로서의 지하외벽 검토결과

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

왼쪽부터 지하외벽 단면, 토층단면/지진토압, 전단벽검토결과(소요전단강도, 소요철근량, 콘크리트설계전단강 도, 단면설계전단강도, 제한설계전단강도 등), 지진토압에 의한 수평변위(층변위, 국부변위)

이 예는 뒤쪽 지하외벽에 작용하는 지반의 정적 횡압을 적용하지 않은 경우임.

Con Casement 출력 화면 25 : 면외하중 및 면내하중을 모두 만족하는 지하외벽의 철근배근

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

ConBasement(ver 20.1) : Basem	nent Design Expert			_	· 🗆 🗙			
	One-Way Basement Wal [Two-Story Baseme	l Amalysis and Design nt Embedded into Soft	Soil] with Two Towe	ers (X Direction Force) Input File: sample-1.	BWD			
25: Exterior Basement Wall Reinforcement Design Result								
WALL PROFILE	VERTICAL BAR PLACING DETAIL Int. Ext. CONCRETE COVER C	Flexure Check Result mm)	HORIZONTAL BAR SCHEDULE for In-Plane	SHEAR LINK BAR PLACING DETAIL for Out-of-Plane	Shear Check Result			
GF-1 200 mm								
5.00 m 400 mm	DI3 @ 150 DI3 @ 150 DI3 @	150 0.444 m (1) 150 0.k. 150 0.k.	013 <u>é</u> 250 e.s.					
4.00 m 400 mm	D15 @ 150 D16 @	150 1.239 ж CD 150 о.к.	013 @ 250 E.S.	0.700 m D10 @ 150 x 17	о.к.			
8F-2 <u>W _ 400 mm</u>	016 @	150 0.672 н (1)		3.590 m				

왼쪽부터 지하외벽 단면, 수직철근배근, 수평철근배근, 면외하중에 대한 전단철근배근

위 화면은 면외하중 및 면내하중에 대해 독립적으로 모두 만족하는 지하외벽의 철근배근과 강도검토 결과

Con Rasement 출력 화면 26 : 지반변위에 의해 말뚝에 작용하는 모멘트와 전단력

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

왼쪽부터 지하외벽/말뚝 단면, 토층단면, 지반/구조 횡변위, 말뚝에 작용하는 모멘트 및 전단력 분포

Con Resement 출력 데이터 다시 보기 및 화면그림파일 저장 창

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

ConBasement(ver 20.1) : Baser	nent Design Expert			– 🗆 X
Con Posement	One-Way Basement Wall Analysis and Design	n		
developed by NEWTECH	[Two-Story Basement Embedded into Soft	: Soil] with Two Towers (X Direction Force) Input File: sample-1	L.BWD
Replay screen graphi	ics and Open Text Report Files ===> Click	a Buti	con Box !	284 269
SCREEN GRAPHICS				
1. Basement W	Jall Layout	13.	Required Design Strength Envelopes-2	
2. Section an	nd Site Specific Data	14.	Flexural Reinforcement Detail, Mu and p	Mn
3. Fundamenta	Al Circular Frequency of Soil Profile	15.	Shear Reinforcement Detail, Vu and pVn	
4. Fundamenta	Al Period of Soil Profile	16.	Crack Width Envelopes	
5. Design Spe	ectral Responce Acceleration	17.	Effective 2nd Moment	
6. Design Spe	ectral Responce Velocity	18.	Deflection Envelopes	
7. Normalized	Lateral Wall-Soil Reaction Stiffness	19.	Lateral Pressures on Back Wall and From	nt Wall
8. Soil-Free	Field Displacement and Seismic Pressure	20.	Story Shear Force by Earth Pressure on	Wa 1 1
9. Soil-Free	Field Displacement and Seismic Pressure	21.	Story Shear Force by Seismic Inertia Fo	irce
10. Lateral Ea	urth Pressure on Wall	22.	Shear Force Distribution in Perimeter H	Basement Wall
11. Design Lat	teral Pressure and Slab Reaction	23.	Required Design Shear Strength of Shear	Wall
12. Required I	Design Strengths by each Load Combination	24.	Req'd Shear Reinforcement of Shear Wall	and Drift
13. Required I	Design Strength Envelopes-1	25.	Exterior Basement Wall Reinforcement De	sign Result
TENT DEDADT FIL		26.	Bending Moment and Shear Force of Singl	e Pile
1 Priof Porc		A11	Copy all screen graphics	
1. brief nepu	Bonont			
2. Contactised	nepurt			
NEXT to contin	nue next process, Click on Me !			

초록색 숫자(1~26)가 있는 각 상자를 클릭하면 해당 화면이 재생된다. 초록색 글씨 [All] 상자를 클릭하면 모든 화면 그림파일이 저장된다.

노란색 숫자(1~3)가 있는 상자를 클릭하면 해당 보고서 파일이 열린다. 노란색 글씨 [All] 상자를 클릭하면 모든 보고서 파일이 열린다.

최하부에 Press [Enter] Key to Continue ! (또는 Terminate !) 구문이 나온 후 [Enter] Key를 누르면 보고서 용 주요 그림파일들이 자동으로 저장된다. 이 그림파일들은 ConBasement-Editor에 의해 Brief Report에 자 동으로 삽입된다.

Con Rasement 종료 화면 :

Sample 1 : 지하2층, 지상부 2동, 비균일 연약지반, 말뚝기초

Con Resement 출력 화면 1A : 내부 전단벽의 배치

Sample 2 : 지하8층, 지상부 1동, 일부 지하층 기반암에 묻힘 ConBasement(ver 20.1) : Basement Design Expert × One-Way Basement Wall Analysis and Design developed by NEWTECH [[[8-Story Basement Embedded into Bedrock]]] with One Tower (X Direction Force) Input File: sample-2n.BWD 1: Basement Wall Layout and Modified(Rs/Rb) Lateral Force of Superstructure BASEMENT WALL LAYOUT with Centers of Basement Wall Rigidity and Lateral Load of Superstructure Direction of Primary Seismic Load in Actual Global Coodinate System of Building ===> X 1 Axis X Joint No = 8 88.93 m 81.36 m y = Wall ID = W-8 15 5.48 m Lω= 53.13 m 88.98 m X Y 16,000 kN 4,800 kN Fy = 45.00 m 45.00 m Yf = Ex 4.09 m 16,000 kN Static and Seism Earth Lateral Pressure Ey = 4.04 m You can sketch while holding down left or mouse button. 13 10 Axis Y Press [Esc] Key to Continue Next Process !

상기 화면처럼 내부전단벽의 배치는 지하외벽이 전단벽으로서 두께가 부족하거나 지하구조의 층횡변위가 커서 지상구조의 내진설계범주를 낮추고자 하는 경우에 필요하며, 바닥 다이아프램의 폭과 길이의 비가 큰 경우(길이/폭의 비가 3배 초과), 즉 길쭉한 경우나 하중전달경로에 큰개구부가 있는 경우에 필요하다.

ConBasement에서 내부전단벽은 필요한 층까지 배치할 수 있다. 예를 들어, 지하8층 지하구조물에서 지하 4층부터 8층까지만 지하외벽의 강도나 강성이 부족할 경우에는 지하 8층에서 지하4층까지만 배치할 수 있 다.

단, 각 내부 전단벽의 길이는 $L_w > 5H_w$ 또는 $L_w/H_w > 5$ 를 만족해야 이 프로그램의 해석결과에 큰 오차가 발생하지 않는다.

Con Rasement 출력 화면 2A : 지반 특성

Sample 2 : 지하8층, 지상부 1동, 일부 지하층 기반암에 묻힘

🗑 ConBasement(ver 20.1) : Basement Design Expert

_

왼쪽부터 지하외벽/말뚝 단면, 토층단면, 각 토층의 단위중량, 저항마찰각/프와송비, 전단파속도

Con Resement 출력 화면 5A : 설계응답스펙트럼 가속도

Sample 2 : 지하8층, 지상부 1동, 일부 지하층 기반암에 묻힘

상부부터 지진구역/내진등급, 유효지반가속도, 지반의 동적특성, 지표면 기준 지반분류, 설계스펙트럼가속도 (단주기, 1초주기), 지반증폭계수(단주기, 1초주기), 내진설계범주, 설계응답스펙트럼가속도

녹색 글씨는 지하구조물 내진설계에 적용하는 지표층(기반암 상부의 토층) 지반의 고유주기에 해당되는 기 반암의 지반증폭계수(단주기, 1초주기), 설계응답스펙트럼가속도, T₀, T_s

붉은 글씨는 지하구조물의 영향을 고려한 지상구조물의 지반증폭계수(단주기, 1초주기), 설계응답스펙트럼가 속도 T₀, T_s, 지반종류, 내진설계범주

그래프에서 연두색 선은 지하구조의 영향을 고려하지 않은 지상구조 설계용 설계응답스펙프럼 가속도. 그래프에서 녹색 선과 글씨는 지하구조 설계용, 붉은색 선과 글씨는 지하구조의 영향을 고려한 지상구조 설 계용. 연두색과 붉은색 선이 겹칠 경우에는 붉은 선만 나타남. 녹색과 붉은색 선이 겹칠 경우에는 녹색 선 만 나타남.

Con Cosement 출력 화면 19A : 앞쪽 및 뒤쪽 벽에 작용하는 횡압(단위 폭) 분포, 전단벽설계용

Sample 2 : 지하8층, 지상부 1동, 일부 지하층 기반암에 묻힘

왼쪽부터 토층단면, 앞쪽 및 뒤쪽 지하외벽에 작용하는 지반 횡압 분포

뒤쪽 지하외벽에 작용하는 지반의 정적 횡압 적용 여부는 사용자의 선택에 따름 이 예는 뒤쪽 지하외벽에 작용하는 지반의 정적 횡압을 적용한 경우임.

Con Resement 출력 화면 20A : 횡압력에 의한 층 전단력(단위 폭) 분포, 전단벽설계용

Sample 2 : 지하8층, 지상부 1동, 일부 지하층 기반암에 묻힘

ConBasement(ver 20.1) : Basem	nent Design Expert			- 🗆 X
Can Personant	One-Way Basement Wall Analysis and De	sign		
	[8-Story Basement Embedded into Be	drock] with One Towe	er (X Direction F	'orce)
			Input File	: sample-2n.BWD
20: Story Shear Force Pr	rofile by Static and Seismic Earth Pres	sure		
WALL		***************** STORY SH	EAR FORCES (Per	1m width) **********
TRUT ILL	Weight Angle Ko Vs	FORCE	FORCE	FORCE UVu
	20.0 kN/sq.m	1.0H	1.0E	1.0H + 1.0E×Ie∕R Ie = 1.20 R = 3.00
GF-1 400 mm				
4.00 нн t = 400 ннн	18, 25, 0.577, 250	34.7 kN	142 KN	91.7 kM
8F-1 300 mm	19 2GL -4.50 mm			
<u>*</u> 	<u> </u>			
4.00 m t = 400 mm		242 KN	526 KN	456 kN
8F-2 300 mm <u>V</u> 	19, 28, 0.55, 350			-
4.00 m t = 600 mm		392 kN	911 kN	1,023 KN
8F-3 300 mm	22, 33, 0.455, 650			
*				
4.00 m t = 600 mm	23, 35, 0.426, 700	363 KN	1,585 kM	1,925 kN
*				
4.00 m t = 800 mm		372 KN	2,375 kN	3,063 KN
8F-5 300 HHH				
	GL -22.5 н	200 10		
8F-6 300 mm	Top of Bed Rock	309 KN	2,707 88	4,554 KN
*	⁻			
4.00 m t = 1,000 mm		370 kN	2,696 kN	5,399 kN
* <u></u> -				
6.00 m t = 1,000 mm		370 KN	2,700 kH	7,891 kN
8F-8 600 mm				
-* <u></u>				
		371 KN	2,699 kN	9,108 KN

왼쪽부터 지하외벽 단면, 토층단면, 지하외벽에 작용하는 1.0H 전단력, 1.0E 전단력, $1.0H + 1.0EI_e/R$ 전 단력

뒤쪽 지하외벽에 작용하는 지반의 정적 횡압 적용 여부는 사용자의 선택에 따름 이 예는 뒤쪽 지하외벽에 작용하는 지반의 정적 횡압을 적용한 경우임.

Con Resement 출력 화면 22A : 각층 지하외벽 요소의 전단력 분포(단위 길이), 전단벽설계용

Sample 2 : 지하8층, 지상부 1동, 일부 지하층 기반암에 묻힘

X방향 하중 적용 시, 각 층의 분할 벽요소에 작용하는 전단력(Vu)의 분포(kN/m)

이 예는 뒤쪽 지하외벽에 작용하는 지반의 정적 횡압을 적용한 경우임.

이 예는 지하8층 지하구조물에서 지하 4층부터 8층까지만 내벽이 추가로 배치되었다. 지하 4층 이하의 내 벽들이 층전단력의 일부를 분담하여 지하 4층부터는 외벽의 전단력이 감소하게된다. 그래프에서 B3과 B4를 비교하면 지하 4층의 외벽 전단력이 지하 3층 외벽보다 작은 것을 알 수 있다.

이 프로그램은 지하구조물에 대한 기반암의 횡지지는 바닥 다이아프램의 위치에 발생한다고 가정하며, 기반암의 첫 번째 지지부 이하의 전단벽의 층전단력은 감소시키지 않고 동일한 층전단력으로 산정한다. 따라서 위 그래프에서 기반암 하부 전단벽들의 전단력 선은 겹치게 된다.

Con Resement 출력 화면 23A : 각 하중 효과에 의한 층전단력(단위 길이), 전단벽설계용

Sample 2 : 지하8층, 지상부 1동, 일부 지하층 기반암에 묻힘

ConBase	ment(ver 20.1) : Ba	sement Design Expert					- 0	×
Cont	Pasamont	One-Way Basem	ent Wall Analysis	s and Design				
developed 1		[8-Story B	asement Embedded	into Bedrock]	with One Tower (X D	irection Force	:)	
						Input File: sa	.mple-2n.BWD	
23: Stor	y Shear Force	es and Required De	sign Shear Streng	ſth				
	WALL PROFILE	**************************************	********** STORY SEISMIC SHEAR	SHEAR FORCE Vu	(kN/m) per 1 meter Wa SEISMIC SHEAR	11 Length ***	·····	*****
		Earth Effect	Earth Effect	Basement Self Effect	Superstructure Self	Effect (Combined With	-
		1.0H	1.0E*Ie/R	1.0E*Ie/R	1.0E*Ie/Rs*(Rs/	Rb) Req'd	Shear Strength,	Vu Vu
GF-1	<u>400 мм</u>							
4.00 m	t = 400 mm	24.0 kN	89.2 KN	15.9 kN	121 kM	184 kN	385 kN	
8F-1	300 mm							
4 00	A	162 km	145 . 14	27.2 km	(21 b)	124 10	Ede Ly	
8F-2	300 mm							
-	* 	═╤ <u></u> ┩╶╴╴╴╴ <mark>┣</mark> ┯╴╴╴╴						
4.00 m	t= 600 ннн	271 kN	252 KN	37.7 KN	121 kM	184 kN	866 KN	
8F-3	300 mm	==						
4.00 m	t = 600 mm	199 kN	347 kN	37.6 kN	95.8 kN	146 kN	826 kM	
8F-4	300 mm							
	<u></u>							
4.00 m	t = 800 mm	215 kN	549 kN	47.3 KN	101 kN	154 kN	1,066 kN	
	¥	≕						
4.00 m	t = 800 mm	GL -22.5 M	626 KN	54.3 kN	101 kM	154 kN	1,148 kM	
88-6	×=			····				
4.00 m	t = 1,000 mm	221 kH	647 kN	56.1 kM	105 kM	159 kN	1,187 kM	
8F-7	350 mm							
	^							
6.00 н	t = 1,000 mm	221 kN	647 kN	56.1 KN	105 kM	159 kN	1,187 kM	
8F-8	V	<u></u>		····			+	
							~~~~	

왼쪽부터 지하외벽 단면, 각 하중에 의한 층전단력(정적토압, 지진토압, 지하관성력, 지상관성력), 소요전단 강도

**뒤쪽 지하외벽에 작용하는 지반의 정적 횡압 적용 여부는 사용자의 선택에 따름** 이 예는 뒤쪽 지하외벽에 작용하는 지반의 정적 횡압을 적용한 경우임.

상기 화면처럼 기반암에 묻힌 지하구조물은 기반암의 횡지지를 고려한 전단벽의 소요전단강도를 산정한다. 이 프로그램은 지하구조물에 대한 기반암의 횡지지는 바닥 다이아프램의 위치에 발생한다고 가정하며, 기반 암의 첫 번째 지지부 이하의 전단벽의 층전단력은 감소시키지 않고 동일한 층전단력으로 산정한다. Con Casement 출력 화면 24A : 기반암에 묻힌 지하구조물의 전단벽으로서의 지하외벽 검토결과

Sample 2 : 지하8층, 지상부 1동, 일부 지하층 기반암에 묻힘



왼쪽부터 지하외벽 단면, 토층단면/지진토압, 뒤쪽 벽에 작용하는 정적 횡압, 전단벽검토결과(소요전단강도, 소요철근량, 콘크리트설계전단강도, 단면설계전단강도, 제한설계전단강도 등), 지진토압에 의한 수평변위(층 변위, 국부변위)

뒤쪽 지하외벽에 작용하는 지반의 정적 횡압 적용 여부는 사용자의 선택에 따름 이 예는 뒤쪽 지하외벽에 작용하는 지반의 정적 횡압을 적용한 경우임.

상기 화면처럼 기반암에 묻힌 지하구조물은 기반암의 횡지지를 고려한 전단벽의 소요전단강도로 검토하고, 사용자의 선택방법에 따라서 기반암의 횡변형 효과를 개략적으로 고려하여 지하구조물의 층 횡변위를 산정 한다. 이 프로그램은 지하구조물에 대한 기반암의 횡지지는 바닥 다이아프램의 위치에 발생한다고 가정하며, 기반암의 첫 번째 지지부 이하의 전단벽의 층전단력은 감소시키지 않고 동일한 층전단력으로 검토한다.

이 예에서 내부 전단벽을 배치하지 않았을 경우에는 전단벽으로서의 지하외벽 두께는 일부층에서 부족하였으나, 내부 전단벽의 적절한 배치로 지하외벽의 두께가 증가되지 않았다.

### Con Resement 출력 화면 25A : 면외하중 및 면내하중을 모두 만족하는 지하외벽의 철근배근

Sample 2 : 지하8층, 지상부 1동, 일부 지하층 기반암에 묻힘

🔐 ConBaser	ment(ver 20.1) : Basen	nent Design Expert						_	
Cont	Pagamont	One-Way Baseme	nt Wall Anal	lysis and Design					
developed		[ 8-Story Ba	sement Embed	lded into Bedroc	k] with	One Tower (X	Direction	Force)	
Input File: sample-2n.BWD									
25: Exterior Basement Wall Reinforcement Design Result									
I	WALL	VERTICAL	BAR	Flexure	HORIZON	ITAL BAR	SHEAR	LINK BAR	Shear
	PROFILE	PLACING Int	DETAIL	Check Result	SCHEDUI	E Plane	PLACIN for Ou	G DETAIL t-of-Plane	Check Result
		CONCRETE C	OVER (mm)	nosarv		1 Iuno	101 04	U UI IIIIU	nosarv
GF-1	400 mm	40	80						
	<u>۲</u>	<u></u>	D13 @ 150 0.0	 584 m (1)	7	Ν			
4.00 m	400 mm	D13 @ 150	D13 @ 150	ο.κ.		D13 @ 250 E.S.			ο.κ.
EF-1	300 <del>mm</del>		D16@150 1.4	432 н (1)		,			
	* <u></u>		D16 @ 150 1.1	L12 m (1)	;				
4.00 m	400 mm	D13 @ 150	D16 @ 150			D13 @ 200 E.S.			
BF-2	300 ммн Y		D22@150 1.3	229 н (1)					
			D16 @ 150 1.3	212 m (1)	,			μ	
4.00 m	800 mm	D16 @ 150	016 @ 150	0.K.		D15 @ 150 E.S.		4	о.к.
87-3	¥		D22 @ 150 1.	орин (1) 309 нн (1)	<u>}</u>	(	0.620 m	010 @ 150 x 27	
4.00 m	600 mm	D16 @ 150	D22 @ 150	о.к.		D13 @ 150 E.S.		7	о.к.
8F-4	300 <del>mm</del>		D22 @ 150 1.5	379 н (1)				_	
-	<u>*</u> <del></del> -	<u>-</u>	D19@150 1.	511 н (1)		(	³ .220 m	D10 @ 150 × 27	
4.00 m	800 mm	D19 @ 150	D19@150			D16 @ 150 E.S.			
8F-5	300 нин		D25 @ 150 1.5	717 н (1)	,	,	3.170 m	D10 @ 150 x 37	
-	*		025@150 1.5	558 н (1)	;	<b>↓</b>	1.060 m	010 @ 150 × 37	
4.00 m	800 нин	D19@150	D22@150	ο.κ.		D16 @ 150 E.S.			ο.κ.
8F-6	300 mm		022 @ 150 1.3	289 ж (1)			3.150 m	010 @ 150 x 370	
4 00 m	1000	n22 @ 150	022 @ 150 0.8	342 н (3) О К	,	N 016/0/150/E.S.			0.K
8F-7	350 ++++						2.410 m	D10 @ 150 x 34	
	<u>*</u> -		038@150 1.	721 m (3)		(			
			058 @ 150 1.9	981 H (1)			3.540	D16 0 450	
6.00 н	1000 ****	D38@150	D22 @ 150			D16 @ 150 E.S.	2.540 #	- DIG @ 150 X 55	
								D10 @ 150 x 23	
BF-8	600 mm		D22@150 1.1	l79 m (1)		/			

왼쪽부터 지하외벽 단면, 수직철근배근, 수평철근배근, 면외하중에 대한 전단철근배근

위 화면은 면외하중 및 면내하중에 대해 독립적으로 모두 만족하는 지하외벽의 철근배근과 강도검토 결과

뒤쪽 지하외벽에 작용하는 지반의 정적 횡압 적용 여부는 사용자의 선택에 따름 이 예는 뒤쪽 지하외벽에 작용하는 지반의 정적 횡압을 적용한 경우임.

## 지하외벽설계 프로그램 **_____**//all을 소개합니다.

### Con Mall의 주요 특징

ConWall은 ConBasement의 보조 프로그램으로서 일반적인 수직 1방향 구조거동 지하외벽(Continuous One-Way Wall) 및 수평 1방향 구조거동 외벽과 이를 지지하는 버팀기둥(Continuous Buttress)에 대한 설계를 수행 한다.

이 프로그램은 유한요소해석법에 의해 지하외벽에 작용하는 지반의 횡력(정적, 지진) 산정에서부터 부재단면 설 계 및 사용성(처짐)/내구성(균열) 검토까지 자동으로 일괄 수행한다. 단, 수평 1방향 외벽은 단순해석법(single span)으로 휨모멘트 및 전단력에 대한 단면설계만 수행하고 처짐/균열검토는 수행하지 않는다.

다음 실행 예는 Dry Area 주변에 있는 지하 1~3층의 버팀기둥(Buttress)과 버팀기둥에 지지된 수평 1방향 외 벽에 대한 설계 예이다. Con Vall 시작 창



입력데이터 파일명 입력 창

## Con///all 출력 화면 8 : 지반의 지진수평변위와 지하외벽에 작용하는 지진토압

Sample 1 : 지하 3층, 비균일 지반, Dry Area 주변 Buttress 설계

ConWall(ver 20.1) : Basem	ent Wall/Buttress Design Expert			– 🗆 X
Contaloll	One-Way Basement	Wall/Buttress Analysis and I	Design	
developed by NEWTECH	[ 3-Story Basen	ment Embedded into Soft Soil	] with multi soil l	ayers
				Input File: sample-1.EWD
8: Soil-Free Field	Displacement and Seism	nic Pressure	Seismi	c Soil Deformation Method
SECTION PROFILE	SOIL PROFILE	Lateral Wall-Soil STIFFNESS	SOIL-FREE FILED DISPLACEMENT	SEISMIC LATERAL PRESSURE
Buttress	Weight Angle Ko Vs 20.0 kN/sg.m	KH in AIK SDG Table CG-1 used each adjacent soil's Vs	а = 8.205 ини b = 0.305 ини	
GF-1		Min.Kh = 4,082 kN/m^3	c = 0.000  Here (a-b)+c = 7.901  Here	
	<u> </u>		d d a = 8.205 mm	
	18.0 30.0 0.50 125 GL -2.00 m			
	18.0 30.0-0.50 150			
	18.0 30.0 0.50 175			
8F-1	18.0 30.0 0.50 200	(1/3)н		
	19.0.31.0.0.48.225			
	19.0 31.0 0.48 250			
				4
	19.0 31.0 0.48 275			
	20.0 31.0 0.48 300		1.760	
BF-2		(2/3)#		
	20.0 31.0 0.48 325			
	20.0 52.0 0.47 550			
	21.0 32.0 0.47 375			
			$\setminus$	
8F-3	21.0 52.0 0.41 400		ь = 0.305 нн	
	21.0 32.0 0.47 425	Bas.Kh = 147,764 kN/m/3		
	GL -14.0 нн		\	
	Top of Bed Rock 24.0 35.0 0.43 760	Max.Kh = 147.764 kN/w^3	Seismic Zone: 21, Ss = 0.220g	
Press [Enter] Ke	u to Continue Next Pro	1	Site Class: S3, Fa= 1.460 S_DS = 0.535, Sa = 5.250	
	g to continue next int		Tg = 0.220, Gd = 93,460	

왼쪽부터 Buttress 입면, 토층단면, 수평지반반력계수, 지반/구조 수평변위, 지진토압 (이 예의 수평지반반력계수는 ConWall의 여러 가지 옵션 중에 내진설계 지침의 표값을 적용한 경우임)

# Con / / / all 출력 화면 11 : 지하외벽에 작용하는 횡하중

Sample 1 : 지하 3층, 비균일 지반, Dry Area 주변 Buttress 설계



왼쪽부터 Buttress 입면, 토층단면, 지하외벽에 작용하는 횡하중, 슬래브 반력, 각 하중조합의 횡하중

# Con / √all 출력 화면 13a : 최대소요강도

Sample 1 : 지하 3층, 비균일 지반, Dry Area 주변 Buttress 설계



왼쪽부터 Buttress 입면, 최대소요휨강도(Moment Envelopes), 최대소요전단강도(Shear Envelopes)

# Con / / / all 출력 화면 14: 휨철근 상세 및 소요휨강도/설계휨강도

Sample 1 : 지하 3층, 비균일 지반, Dry Area 주변 Buttress 설계



왼쪽부터 Buttress 입면, 휨철근배근상세(철근 직경, 간격, 이음, 정착 등), 소요휨강도/설계휨강도(Envelopes)

# Con / / / all 출력 화면 15 : 전단철근 상세 및 소요전단강도/설계전단강도

Sample 1 : 지하 3층, 비균일 지반, Dry Area 주변 Buttress 설계



왼쪽부터 Buttress 입면, 전단철근배근상세(철근 직경, 간격, 배근 범위 등), 소요전단강도/설계전단강도 (Envelopes)

# Com)√/all 출력 화면 16 : 균열폭 분포

Sample 1 : 지하 3층, 비균일 지반, Dry Area 주변 Buttress 설계



왼쪽부터 Buttress 입면, 휨철근배근상세, 사용하중모멘트/균열모멘트, 균열폭(균열 상태별 구분)

## Con / //all 출력 화면 17 : 유효 2 차단면모멘트 분포

#### Sample 1 : 지하 3층, 비균일 지반, Dry Area 주변 Buttress 설계



왼쪽부터 지하외벽 단면, 휨철근배근상세, 사용하중모멘트/균열모멘트, 2차단면모멘트(I_G, I_{cr}, I_{eff})

# **Con Wall** 출력 화면 18: 처짐 분포

Sample 1 : 지하 3층, 비균일 지반, Dry Area 주변 Buttress 설계



왼쪽부터 Buttress 입면, 휨철근배근상세, 사용하중모멘트/균열모멘트, 처짐(초기처짐, 장기처짐)

# Con / //all 출력 화면 19: 철근배근상세

veloped by NEWTECH	[ 3-Story Ba	isement Embedd	ed into Soft Soil	] with m	ulti soil la I	yers nput File: s	ample-1.EWD
Exterior Basement W BUTTRESS PROFILE	all Reinforcemen UERTICAI PLACING Int. CONCRETE (	nt Design Resu 2 BAR DETAIL Ext. COVER (mm)	llt Flexure Check Result	SHEAR LIN PLACING I for Out-c	IK BAR DETAIL of — Plane	Shear Check Result	Side Skin Longitudinal Ba Dia @ Max.Spaci
GF-1 200 mm	40	80	Fy = 400 MPa				Fy = 400 MPa
*		4 019 0.84	1 m (1)	0.970 m	2 010 @ 250 in	Ver.	****
в = 600 мин 5.00 м D = 900 мин	5 019	9 019	ο.κ.				Not required
				3.070 m	2 D10 @ 250 in		
				3.770 m	2 010 @ 200 in		
8F-1 200 mm		0.010.1.07					
*=	•• • • • • • • • • • • • • • • • • • • •	9 D19 1.87	1 m (1) 1 m (1)				*
R - 600 mm				1.320 m	2 D10 @ 250 in	Ver.	
4.00 m D = 1,200 mm	6 D19	9+ 2 019				о.к.	D10 @ 250 E.S.
				2.300 m	2 D10 @ 250 in		
8F-2 200 mm		9+ 2 D19 1.79	5 н (2)				
		9+ 2 D19 1.88	1 m (1)				Î
8 = 600 mm 4.00 m p = 1.200 mm	9+ 1 019	6 019	0.K.	1.770 н	4 010 @ 200 in	Ver.	010 @ 250 F.S.
				2.090 m	2 D10 @ 250 in	Ver.	
				2.700 н	2 D10 @ 250 in		
100							
¥400 mm	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				¥

왼쪽부터 Buttress 입면, 휨철근배근상세, 휨강도검토결과, 전단철근배근상세, 전단강도검토결과, 양측표면철 근

# 

Sample 1 : 지하 3층, 비균일 지반, Dry Area 주변 Horizontal One-Way Wall 설계



왼쪽부터 Buttress입면/Wall단면, 수직휨철근배근상세, 수평휨철근배근상세/전단철근배근영역, 전단철근 직경 및 간격

#### 일방향 슬래브설계 프로그램 **Con Slab** 를 소개합니다.

#### Con Slab의 주요 특징

국내의 기존 일방향슬래브 설계프로그램들은 대부분 근사해석법(일명 계수법)을 적용하고 있어 ① 인접 2경간의 길이 차이가 20% 이하, ② 등분포하중, 활하중/고정하중비가 3배 이하, ③ 일정한 슬래브두께 및 ④ 철근콘크 리트 보와 일체화된 슬래브인 조건을 만족하여야 적용할 수 있다. 그러나 이 조건들을 만족하더라도 각 경간의 중앙부 구간에 큰 부모멘트가 발생되기도 하지만 근사해석법에는 이에 대한 모멘트 계수를 제공하고 있지 않다. 따라서 영국 콘크리트구조기준(BS 8110)은 아래 표와 같이 근사해석법의 적용조건을 더 엄격하게 제한하고 있 으며, 근래의 유로통합 콘크리트구조기준(EC2)은 근사해석법에 대한 조항을 포함하지 않았고 활하중의 배치 (pattern loading)와 지지조건 등을 고려한 구조해석을 통한 구조설계를 요구한다.

#### 각 국가의 콘크리트구조기준의 근사해석 적용 조건

제한 조건	한국, 미국 (KBC 2016, ACI 318)	영국 (BS 8110)	호주 (AS 3600)
최소 경간 수	2경간 이상	3 경간 이상	2경간 이상
인접 2경간의 길이 차이	20% 이하	15% 이하	20% 이하
하중분포	등분포	등분포	등분포
활하중/고정하중 비	3배 이하	1.25배 이하, LL ≤ 5.0kN/m²	2배 이하
부재단면의 크기(두께)	일정	일정	일정

ConSlab는 다양한 하중분포(등분포, 집중), 활하중배치(pattern loading)와 다양한 지지조건 등을 고려한 구조 해석을 통해 설계하므로 근사해석법을 적용할 수 없는 조건의 일방향슬래브에도 적용할 수 있다. 예를 들면 철 근콘크리트 보와 일체로 된 슬래브가 아닌 H형강 합성보에 지지된 슬래브에도 적용할 수 있다.

ConSlab는 탄성 유한요소해석법에 의해 모든 요소분할위치의 소요강도를 산정하고 모든 요소분할위치의 유효2 차단면모멘트를 고려하여 처짐(ACI 318_19) 및 균열(FIB MODEL CODE 2010)을 해석한다. 철근은 '철근콘크리 트 배근상세 지침(KSEA, ACI)'에 따라 배치하며, 중앙부 상부철근이 필요할 경우에는 부모멘트의 분포형상을 고려하여 배치한다.

새롭게 바뀐 ACI 318-19에 의한 처짐 량은 이전 기준의 처짐 량보다 훨씬 크게 산정되므로 처짐 검토에 유의 할 필요가 있다.

뒤에 첨부한 출력화면을 통해 ConSlab의 설계수행 과정과 내용을 개략적으로 파악할 수 있다.

#### Con Slab 시작 창





입력데이터 파일명 입력 창

## **Con Slab** 출력 화면 1 : 입력 자료 및 소요휨강도

#### Sample 1 : 5스팬 연속슬래브, 다양한 지지부, 등분포 및 집중하중



- 연속슬래브의 두께, 경간길이, 지지부 형상(일체화된 콘크리트보, 일체화된 벽, 강재합성보, 핀지지 등을 적용할 수 있음)
- 2. 고정하중 분포(등분포, 집중 하중을 적용할 수 있음)
- 3. 활하중(등분포, 집중 하중) 분포
- 4. 소요휨강도 분포

## Con Slab 출력 화면 2 : 안전성 설계결과

#### Sample 1 : 5스팬 연속슬래브, 다양한 지지부, 등분포 및 집중하중



상부부터

1. 연속슬래브의 두께, 경간길이, 지지부 형상, 휨철근 상세(하부철근, 양단부 상부철근, 중앙부 상부철근)

2. 소요휨강도/설계휨강도 분포

3. 소요전단강도/설계전단강도 분포

## Con Slab 출력 화면 3 : 사용성 검토를 위한 휨모멘트와 전단력

Sample 1 : 5스팬 연속슬래브, 다양한 지지부, 등분포 및 집중하중



상부부터

1. 연속슬래브의 두께, 경간길이, 지지부 형상, 휨철근 상세(하부철근, 양단부 상부철근, 중앙부 상부철근)

2. 사용하중에 의한 휨모멘트 분포(고정하중, 활하중, 총하중)

3. 사용하중에 의한 전단력 분포

## Con Slab 출력 화면 4: 사용성 검토를 위한 유효2차단면모멘트

#### Sample 1 : 5스팬 연속슬래브, 다양한 지지부, 등분포 및 집중하중



- 1. 연속슬래브의 두께, 경간길이, 지지부 형상, 휨철근 상세(하부철근, 양단부 상부철근, 중앙부 상부철근)
- 2. 사용하중에 의한 휨모멘트 분포(고정하중, 활하중, 총하중), 균열 모멘트, 저감된 균열모멘트
- 3. 단면2차모멘트(비균열  $I_{G'}$  균열  $I_{cr'}$ , 고정하중에 대한  $I_{eff}$ , 총하중에 대한  $I_{eff}$ )

## Con Stab 출력 화면 5 : 처짐에 대한 검토결과

#### Sample 1 : 5스팬 연속슬래브, 다양한 지지부, 등분포 및 집중하중



- 1. 연속슬래브의 두께, 경간길이, 지지부 형상
- 2. 각 사용하중(고정하중, 활하중, 총하중)에 의한 초기처짐 분포
- 3. 활하중에 의한 즉시처짐 분포
- 4. 총하중에 의한 장기처짐 분포

## Con Slab 출력 화면 6 : 균열에 대한 검토결과

#### Sample 1 : 5스팬 연속슬래브, 다양한 지지부, 등분포 및 집중하중



- 1. 연속슬래브의 두께, 경간길이, 지지부 형상, 휨철근 상세(하부철근, 양단부 상부철근, 중앙부 상부철근)
- 사용하중에 의한 휨모멘트 분포(고정하중, 활하중, 총하중), 균열 모멘트(구속영향 미고려), 저감된 균열모 멘트(구속영향 고려)
- 3. 지속하중에 의한 균열폭 분포(균열상태를 색깔로 구분), 지지부 면에서의 균열폭(흰색 점선), 허용균열폭 연두색 균열은 균열형성단계 상태, 녹색 균열은 안정화된 균열상태, 분홍색은 EC2의  $\sigma \ge 0.6\sigma_s/E_s$ 인 인 장철근응력상태의 균열폭
ConBasement의 면내전단강도

ACI 318-19는 다음과 같이 변경되었다.

전단벽의 전단강도